Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Kanji Kubo,^a* Teppei Tsujimoto^b and Akira Mori^a

^aInstitute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan, and ^bGraduate School of Engineering Sciences, 39, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan

Correspondence e-mail: kubo-k@cm.kyushu-u.ac.jp

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.042 wR factor = 0.116 Data-to-parameter ratio = 17.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved The title compound, $C_{15}H_{11}NO$, exists in the crystal in its keto form as 3-phenylpyrrolo[2,3-*b*]tropone [systematic name: 3phenylcyclohepta[*b*]pyrrol-8(1*H*)-one] rather than in the enol form as 8-hydroxy-3-phenyl-1-azaazulene. The sevenmembered ring shows pronounced bond alternation typical of tropone derivatives.

3-Phenylpyrrolo[2,3-b]tropone

Received 22 January 2001 Accepted 30 January 2001 Online 13 February 2001

Comment

It is known that tris(8-quinolinolido) AI^{III} is widely used for electron-transporting materials (Tang & VanSlyke, 1987). Pyrrolo[*b*]tropones (Nozoe *et al.*, 1954) are isoelectronic with 8-quinolinols, and so might have the potential to form emitting materials. However, our studies (yet unpublished) show that pyrrolo[*b*]tropones and their metal complexes do not have reasonable emitting properties. We now report the structure of 3-phenylpyrrolo[2,3-*b*]tropone, (I), to determine its major tautomer.

The pyrrolotropone moiety of molecule (I) is approximately planar; the deviations from the least-squares plane defined by C1–C9/O1/N1 do not exceed 0.1 Å. The dihedral angle between the pyrrolotropone and the phenyl substituent planes is 45.31 (5)°; this is much greater than the analogous angle formed by the phenyl and indolizine planes in 2-phenyl-6-nitroindolizine (6.1°; Tafeenko & Aslanov, 1980).

The C-C bond lengths of the seven-membered ring show bond alternation typical of tropone; the C1-O1 bond length [1.2460 (17) Å] is similar to that observed in the structure of unsubstituted tropone (1.259 Å; Barrow *et al.*, 1973). The C-C and C-N bond lengths in the pyrrole ring are close to those found in pyrrole (Goddard *et al.*, 1997). The objective location of the H1 atom bonded to N1, rather than O1, as well as the tropone-like bond-length distribution, makes assignment of the keto form, (I), rather than the enol form, (I'), unambiguous.

The pyrrole NH group participates in an intermolecular hydrogen bond [N1-H1 0.959 (17), N1...O1ⁱ 2.773 (2) and H1...O1ⁱ 1.968 (16) Å; symmetry code: (i) $-x, -\frac{1}{2} + y, -\frac{1}{2} - z$] of the N-H...O type. This hydrogen bond links the mol-

Figure 1

The molecular structure of (I) showing 50% probability displacement ellipsoids.

ecules in the crystal into infinite chains stretching along the b axis.

Experimental

The title compound, (I), was prepared by condensation of 2-hydrazinotropone with acetophenone accompanied by cyclization (Nozoe *et al.*, 1954). Single crystals of (I) were obtained by recrystallization from ethyl acetate.

Crystal data

$C_{15}H_{11}NO$
$M_r = 221.25$
Monoclinic, $P2_1/c_1$
a = 14.2145 (10) Å
b = 7.7681 (5) Å
c = 10.3928 (6) Å
$\beta = 101.980 \ (5)^{\circ}$
$V = 1122.58 (13) \text{ Å}^3$
Z = 4

Data collection

Enraf-Nonius CAD-4 diffract-
ometer
ω –2 θ scans
ψ scan (North <i>et al.</i> , 1968)
$T_{\min} = 0.978, T_{\max} = 0.999$
2851 measured reflections
2700 independent reflections
1921 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.116$ S = 1.032700 reflections 158 parameters H atoms treated by a mixture of independent and constrained refinement $D_x = 1.309 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 11.0-18.2^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 (2) K Prism, pale yellow $0.47 \times 0.47 \times 0.43 \text{ mm}$

$R_{\rm int} = 0.022$
$\theta_{\rm max} = 28.0^{\circ}$
$h = -18 \rightarrow 18$
$k = 0 \rightarrow 10$
$l = -13 \rightarrow 0$
3 standard reflections
frequency: 120 min
intensity decay: 3.9%
· · ·

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0526P)^{2} + 0.2047P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.18 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.22 \text{ e} \text{ Å}^{-3}$

Figure 2

Packing diagram viewed down the b axis.

Table 1			
Selected	geometric parameters	(Å,	°)

N1-C2	1.3591 (17)	C5-C6	1.419 (2)
N1-C8	1.3510 (18)	C6-C7	1.353 (2)
N1-H1	0.959 (17)	C8-C9	1.3712 (18)
O1-C1	1.2460 (17)	C9-C10	1.4777 (18)
C1-C2	1.4452 (19)	C10-C11	1.3948 (19)
C1-C7	1.442 (2)	C10-C15	1.394 (2)
C2-C3	1.4149 (18)	C11-C12	1.386 (2)
C3-C4	1.4199 (19)	C12-C13	1.375 (3)
C3-C9	1.4326 (19)	C13-C14	1.375 (3)
C4-C5	1.354 (2)	C14-C15	1.382 (2)
C3-C9-C10-C11	48.0 (2)	C3-C9-C10-C15	-135.37 (15)

Table 2Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots O1^i$	0.959 (17)	1.968 (16)	2.773 (2)	140.38 (10)
Symmetry code: (i)	$-x, y - \frac{1}{2}, -\frac{1}{2} - z.$			

All H atoms were included in the refinement in geometrically calculated positions in the riding model approximation with C–H set to 0.93 Å, except for the NH group H atom, which was located in the difference synthesis and for which both positional and displacement parameters were refined.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *MolEN* (Fair, 1990); program(s) used to solve structure: *SIR*97 (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *Xtal_GX* (Hall & du Boulay, 1995); software used to prepare material for publication: *SHELXL*97.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

- Barrow, M. J. Mills, O. S. & Filippini, G. (1973). J. Chem. Soc. Chem. Commun. pp. 66–67.
- Enraf-Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- Goddard, R., Heinemann, O. & Krüger, C. (1997). Acta Cryst. C53, 1846– 1850.
- Hall, S. R. & du Boulay, D. (1995). *Xtal_GX*. University of Western Australia, Australia.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Nozoe, T., Kitahara, Y. & Arai, T. (1954). Proc. Jpn Acad. 30, 478-481.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Tafeenko, V. A. & Aslanov, L. A. (1980). Zh. Strukt. Khim. 21, 69-78.
- Tang, C. W. & VanSlyke, S. A. (1987). Appl. Phys. Lett. 51, 913–915.